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Abstract. I introduce ambiguity aversion to a class of games that includes the all-pay

auction and war of attrition. The main result is a characterization of the set of increasing

equilibria. Unlike with subjective expected utility, even when beliefs are independent of

type, an increasing equilibrium may not exist. Sufficient conditions are provided for such an

equilibrium to exist. The games are compared in terms of the expected sum of expenditures.

1. Introduction

Since the work of Ellsberg[11], there has been a large body of experimental work that

demonstrates that some behavior under uncertainty cannot be explained by maximization

of subjective expected utility (SEU). Behavior that contradicts SEU is particularly common

when there is ambiguity about the probability of events. In the finance and macroeconomics

literature, ambiguity aversion, which generalizes SEU, has been shown to solve many puz-

zles regarding asset prices, notably the equity premium puzzle.1 Mukerji[29] has shown that

ambiguity aversion can explain incompleteness of contracts in situations where costly con-

tracting alone gives counter-factual predictions. Kagel and Levin[18] proposed ambiguity

aversion as an explanation for overbidding in first-price auctions.

I apply ambiguity aversion to a class of games of incomplete information where the all-

pay auction[32] and war of attrition[26] are limiting cases[43][31]. These games have been

used to model a wide variety of strategic environments in which players compete for a

prize by expending resources or effort. Examples include firms competing to determine

industry standards[8], firms exiting a crowded market[13], students competing for college

admissions[17], and online auctions[35].

Ambiguity is likely to be present in many environments modeled by games of incomplete

information. In the games studied here, players are uncertain about how much another
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player values a prize. With SEU, this uncertainty is modeled using a distribution over the

other player’s value called a belief distribution. The player’s interim utility is the expected

utility calculated using that distribution. However, in many applications the distribution

of the other player’s value is hard to learn either because the environment is changing or

because of a lack of experience. Following Lo[25], I model ambiguity using the maxmin

expected utility model of Gilboa and Schmeidler[14]. With MEU, beliefs are modeled by

a set of distributions, ∆, of which any one may generate the other player’s value. The

player calculates the expected utility for each distribution in ∆, and the utility is the lowest

expected utility for any distribution in ∆. By choosing an action which maximizes the

minimum expected utility an ambiguity averse player chooses an action which is robust to

the worst case distribution.

I find that ambiguity has a significant impact on both the expected sum of expenditures

and the efficiency of the games studied here. With MEU, players expend more resources in

the first-price auction than in the all-pay auction. Under conditions that insure the existence

of an increasing equilibrium, players expend more in the all-pay auction than in the war of

attrition. Also, these games may fail to have an efficient equilibrium in the sense that the

prize is not always awarded to the player who values it the most. As I explain in the literature

review, these results contrast the results in an analogous SEU environment.

I provide a characterization for the increasing, symmetric equilibria of games in this class.

Previously, a general characterization of equilibrium was only available for games like the

first-price auction where the minimizing distribution is the one which minimizes the proba-

bility of winning. Because the games studied here may not have that property, a different

method is required to derive the equilibrium. The technique for characterizing equilibria can

be applied to other games with MEU. I also provide conditions for an increasing equilibrium

to exist.

1.1. Related Literature. In his seminal work, Lo[25] applied the MEU model to the first-

price auction where he derived the unique increasing equilibrium. His analysis depends on

the following observation about the first-price auction. Any bid submitted by a player results

in one of two outcomes; either the player wins the object and pays the bid, or the player

does not win the object and makes no payment. Because of this, assuming that players bid

below their own value, an expected utility minimizing distribution is a distribution in ∆

which minimizes the probability of having the highest bid. Thus, the set of expected utility

minimizing distributions does not depend on the player’s value. As Lo[25] noted, in many

auctions the expected utility depends on more than just the probability of having the highest

bid. More generally, the minimizing distribution may also depend on the player’s own value
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if the ex post utility depends on more than whether the player wins and the player’s own

bid.

Since the work of Lo[25], there have been a number of papers that apply MEU to a

variety of games and mechanism design environments. These games and mechanisms have

the property that the ex post utility, given a bid, only depends on winning or losing. Levin

and Ozdenoren[24] study the first-price auction with particular emphasis on uncertainty

about the number of bidders. Again, the minimizing distribution is the one which minimizes

the probability of winning. Bose, Ozdenoren, and Pape[7] and Bodoh-Creed[6] consider the

problem of designing revenue maximizing mechanisms. Both of the mechanism design papers

find that, in the optimal mechanism, the set of minimizing distributions is the same as in

the first-price auction and does not depend on the type of the player.

In the war of attrition, the worst case distribution may depend on the player’s type. In

this game the player with the highest bid wins the object and pays the losing bid. The

loser pays his own bid and does not receive a prize. Thus the ex post utility in the war of

attrition depends on whether the player wins or not, and for the winner, it depends on the

losing bid. This makes the war of attrition much different from the first-price auction when

there is MEU. The expected utility will depend on both the probability of winning and the

expected payment. The relative importance of these two parts will depend on how much

the player values the prize. Players with high values will tend to prefer distributions with a

higher probability of winning, whereas players with low values will be more concerned with

the expected payment. Thus the distribution in ∆ that minimizes a player’s expected utility

may be different for types with different values. As a result, a different method of analysis

is needed from the one used for first-price auctions. One consequence is that, whereas the

first-price auction has an increasing equilibrium in the symmetric MEU model, this may not

be the case with the war of attrition.

The existence of an increasing equilibrium in the war of attrition and all-pay auction

has been studied with SEU. An equilibrium exists when the players’ values are distributed

independently so that each player’s belief does not depend on the player’s own type[2][3][43].

In the affiliated private values model with players who have SEU, Milgrom and Weber[28]

show that to have an increasing equilibrium, in the first-price auction, it is sufficient that

a player’s belief is increasing in the player’s value, in the sense of affiliation. Krishna and

Morgan[23] show that, when players have SEU, an increasing equilibrium exists in the war

of attrition and all-pay auction if the affiliation is moderate.

In the MEU model, even when the player’s belief, ∆, is independent of the player’s value,

an increasing equilibrium may not exist. This is because the expected utility minimizing
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distribution may depend on the player’s value. The dependence arises because in games like

the war of attrition the payment, in the event of winning, depends on the other player’s bid.

Since the expected payment depends on the other player’s strategy, the set of minimizing

distributions depends on the equilibrium. This contrasts Krishna and Morgan[23] where the

distribution used to calculate expected utility depends on the value exogenously through

Bayesian updating.

The revenue equivalence theorem[30] implies that when players have SEU and independent

beliefs the sum of expenditures in the games studied here is the same as in the first-price

and second-price auctions. With a particular form of ∆, Lo[25] showed that the first-price

auction generates more revenue than the second-price auction with MEU. Bodoh-Creed

showed that more generally no revenue ranking exists between the two auctions when players

have MEU. The ranking that I provide for the all-pay auction and first-price auction holds

quite generally; the ranking of the all-pay auction and war of attrition holds under a set of

conditions that insure that an increasing equilibrium exists. Thus, these revenue rankings

are the most general rankings that I know of for commonly used mechanisms. It should

be noted that these rankings are the reverse of what Krishna and Morgan[23] find in the

affiliated values SEU environment. The ranking between the first-price and all-pay auction

complements Fibich, Gavious, and Sela[12] who study the independent values environment

with risk averse players who have SEU preferences.

The remainder of the paper is organized as follows. Section 2 formally presents the model.

Section 3 discusses games in which the set of minimizing distributions is independent of

the value. These games can be ranked by the expected sum of expenditures. Section 4

contains a characterization of the set of symmetric, increasing equilibria in the general model.

Sufficient conditions for existence of such an equilibrium are provided. Section 5 provides

an example that illustrates why an ex post efficient equilibrium may not exist with MEU.

Section 6 discusses some extensions including the smooth ambiguity aversion model and type

dependent ambiguity. Section 7 concludes. The appendix contains some of the proofs.

2. Model

I begin by describing the class of games studied here. Although all of the results apply

to games with any finite number of players, to simplify notation, I consider games with two

players, player 1 and player 2.2 Player i’s value for a prize, vi, comes from the interval [v, v],

with v ≥ 0. Upon learning their own values, both players simultaneously submit a bid. Let

2The main savings occurs when I describe beliefs. With multiple players the relevant distribution for
calculating expected utility is the distribution of the highest bid of the n− 1 other players.
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bi ≥ 0 be player i’s bid. The allocation function, xi(b1, b2), determines the probability that

player i receives the prize. In addition, each player i has a transfer function, τi(b1, b2), which

is player i’s expenditure as a function of the bids.

I will restrict attention to a specific, well studied class of allocation and transfer functions

which includes the all-pay auction and war of attrition[2].

(1) xi(b1, b2) =


1, if bi > bj

1/2, if bi = bj

0, otherwise

(2) τi(b1, b2) =

{
(1− p)bi + pbj, if bi > bj
bi, otherwise

Where p ∈ [0, 1). When p = 0, the transfer function is that of the all-pay auction. When

p = 1, the game is a static version of the war of attrition. The usual interpretation of the

war of attrition is that players expend resources over time until one side concedes at which

point the game terminates instantly. In a dynamic setting, p < 1 captures a situation in

which a player does not learn about an opponent’s concession immediately[2]. p could also

be thought of as the probability that the winner pays the losing bid.3

The ex post utility of player i is given by the following utility function.

(3) ui(b1, b2, vi) = xi(b1, b2)vi − τi(b1, b2).

This utility is known as the risk-neutral, private values model. To better understand the

role of ambiguity aversion I restrict attention to this benchmark model of ex post utility.4

Now I define the interim utility, which is the utility at the point where each player knows

his own value but not the other player’s value. This is modeled by the maxmin expected

utility of Gilboa and Schmeidler[14]. A player’s ambiguous belief is a set of distributions

over the other player’s value. The player’s utility is the lowest expected utility generated by

any distribution in the set.

Let ∆i(vi) be the belief set for player i with a value of vi. The expected utility, with

respect to distribution G, for player i with value vi and bid bi is defined as

(4) Ũi(bi; vi, s, G) ≡
∫ v

v

ui(bi, s(vj), vi)g(vj)dvj

3See Bulow and Klemper[8] for some natural ways to extend this description to more than two players.
4This model can handle asymmetric information regarding both costs and values. That is, the model

also includes the seemingly more general case that ũi(b1, b2, vi, ci) = xi(b1, b2)vi − ciτi(b1, b2) where ci is
interpreted as the marginal cost of expenditure. Using an affine transformation ũ becomes ui(b1, b2, vi/ci) =
xi(b1, b2)vi/ci − τi(b1, b2), which is equivalent to the original model as long as ci > 0.
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where s : [v, v]→ R+ is a measurable strategy and G is a distribution over [v, v], with density

g. The maxmin expected utility is given by

(5) Ṽi(bi; vi, s) ≡ inf
G∈∆i(vi)

Ũ(bi; vi, s, G).

If ∆i(vi) is singleton, then the utility corresponds to SEU; otherwise, the player is said to

be ambiguity averse.

An equilibrium of the game is analogous to an equilibrium in a game with subjective

expected utility; each player’s strategy maximizes his utility given the other player’s strategy.

Definition 2.1. A pure strategy equilibrium is a pair of measurable strategies (s1, s2) such

that for each player i ∈ {1, 2} and j 6= i and for every vi ∈ [v, v],

Ṽi(si(vi), vi; sj) ≥ Ṽi(bi, vi; sj)

for all bi ≥ 0.

I will further restrict attention to equilibria which are increasing. For the rest of the paper,

when I refer to an increasing strategy I mean a strategy which is strictly increasing in the

player’s value. That is if v > v′, then s(v) > s(v′) for all v, v′ ∈ [v, v]. There are several

reasons for focusing on increasing strategies. First, when the environment is symmetric, the

symmetric, increasing equilibria are the ex post efficient equilibria. Also, if ∆ is singleton

the unique equilibrium is in increasing strategies[2][34].

For an increasing strategy s and for each bid b ∈ [s(v), s(v)], there is at most one value

z ∈ [v, v] such that b = s(z). Thus, it will be notationally convenient to think of the players

as choosing the value that corresponds to a bid rather than choosing a bid. If a player chooses

bid b this is equivalent to choosing z = s−1(b) when the other player is using the continuous,

increasing strategy s. Now, with continuous, increasing strategies and this notation, write

the expected utility of a player with value vi who bids sj(z) as

(6) Ui(z; vi, s, G) ≡ Ũi(sj(z); vi, sj, G) = viG(z)− p
∫ z

v

sj(t)g(t)dt− (1− pG(z))sj(z).

This follows since with an increasing strategy the probability that a player pays his own bid

is given by 1−pG(z). With the complementary probability the player pays the other player’s

bid. From the point of view of a player, the other player’s bid is a random variable determined

by the strategy and distribution of the other player’s value. The maxmin expected utility is

similarly defined as a function of z and is denoted by Vi(z; vi, s).

A. 1. ∆i(vi) = ∆ for all vi ∈ [v, v], for i = 1, 2.
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This assumption makes the model as close as possible to the benchmark SEU model in

which values are independent and identically distributed. A.1 says that the beliefs for both

players are the same and that those beliefs do not depend on the player’s value. By focusing

on this simple model the role of ambiguity aversion is most transparent. I discuss making

the beliefs of the players dependent on the player’s value in Section 6. Because I focus on a

symmetric environment the player subscript is often omitted.5

A. 2. ∆ is a set of continuously differentiable, strictly increasing distributions on [v, v]. ∆

is convex and compact in the sense that the densities form a compact set with respect to

the uniform topology.6

At this stage, note that A.2 insures that there is a distribution in ∆ that minimizes

the expected utility. This follows because the expected utility will be continuous in the

distribution of the other player’s value. Throughout this paper, A.1 and A.2 are implicitly

assumed unless otherwise stated.

3. Type Independent Minimizing Distributions

3.1. Equilibrium. To begin, I derive the equilibrium in the games for which the set of

minimizing distributions does not depend on the player’s value. To discuss such games,

the following notation is useful. Define the absolutely continuous distribution Fm(v) ≡
minG∈∆ G(v) for all v ∈ [v, v]. Fm is the lower envelope of the distributions in ∆; in general,

Fm may not be contained in ∆.

First, consider the all-pay auction, which is similar to the first-price auction in the sense

that the ex post utility given a bid only depends solely on having the highest bid. As in

the first-price auction, in the all-pay auction, the set of minimizing distributions does not

depend on the player’s value. This is true because in the all-pay auction, an expected utility

minimizing distribution minimizes the probability of winning. For an increasing strategy s,

the MEU is written

(7) V (z; v, s) = min
G∈∆

vG(z)− s(z) = vFm(z)− s(z).

The second equality follows since Fm(v) coincides with the lowest probability of having the

highest bid. This observation leads to the following equilibrium characterization. 7

5For a discussion of asymmetry with SEU see Amann and Leininger[2]
6For continuously differentiable distributions this is the same as the topology induced by the norm

max
{

supv∈[v,v] |F (v)|, supv∈[v,v] |f(v)|
}

(Abbott p.164 2001[1], Rudin p.152 1976[37]).
7That the first-price and all-pay auctions have the same set of minimizing distributions was briefly noted

in Bodoh-Creed[6].



8 STEVEN STONG

Lemma 3.1. The unique increasing equilibrium of the all-pay auction is for players to use

the strategy

(8) β(v) =

∫ v

v

tfm(t)dt.

Proof: The proof follows from the observation that the players’ utility is the same as in the

game where Fm is the unique distribution in the players’ belief set (i.e. SEU). The uniqueness

and characterization follow from the standard analysis of the all-pay auction in Amann and

Leininger[2]. �

Unlike in the all-pay auction, when p 6= 0, the expected utility minimizing distribution

may not minimize the probability of winning. This is because the payment in the event of

winning depends on the other player’s bid. However, if Fm ∈ ∆, Fm is always one of the

minimizing distributions. This follows since Fm first order stochastic dominates (FOSD) the

distributions in ∆, and the payment for a player is weakly increasing in the other player’s bid.

Thus Fm both maximizes the expected payment and minimizes the probability of winning.8

A. 3. Fm ∈ ∆.

Using assumption A.3 the utility can be written

(9) V (z; v, s) = vFm(z)− p
∫ z

v

s(t)fm(t)dt− (1− pFm(z))s(z).

This leads to the following equilibrium characterization.

Lemma 3.2. A.3 implies that the unique symmetric, increasing equilibrium, when p ∈
[0, 1),9 is for players to use the strategy

(10) β(v) =

∫ v

v

tfm(t)

1− pFm(t)
dt.

Proof: The proof is the same as Lemma 3.1.�

8The FOSD assumption has been used by Stong[40] to develop comparative statics with regard to the size
of ∆. Lo[25] and Bodoh-Creed[6] used sets satisfying this property to study the revenue ranking of the first-
and second-price auctions. Levin and Ozdenoren[24] use the stronger monotone likelihood ratio order to
prove results when there is an uncertain number of bidders in the first-price auction.This assumption is also
used to prove results in the mechanism design literature[7]. Carvalho[9] uses the stronger reverse-hazard-rate
order to establish results in auctions with smooth ambiguity aversion.

9Nalebuff and Stiglitz[32] show that in the war of attrition there is a continuum of asymmetric equilibria.
The equilibrium described is the unique symmetric equilibrium when p = 1.
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3.2. Revenue. In this section, I provide a revenue ranking for the class of games studied

here as well as a comparison to the first-price auction. The term revenue is in keeping with

the auction literature; however, in many applications, the expenditure of resources may be

wasteful to society. The classical example is rent seeking behavior as studied by Tullock[42].

To calculate expected revenue, suppose that both players’ values are drawn independently

from a distribution F : [v, v] → [0, 1]. F could be thought of as the belief of an ambiguity

neutral seller.10 In order to be able to discuss general revenue rankings, it is necessary to

impose a consistency requirement on the beliefs of the players and the seller. Otherwise,

F could be chosen to produce any revenue ranking. A.4 below is a generalization of the

common prior assumption. The assumption says that the players and the seller agree in the

sense that the seller’s belief is in the players’ ambiguous belief set.

A. 4. F ∈ ∆.

Proposition 3.3. Given assumption A.4, the expected revenue of the first-price auction is

higher than that of the all-pay auction.

Proof: Lo[25] shows that

(11) B̂(v) = v −
∫ v
v
Fm(t)dt

Fm(v)

is the unique equilibrium of the first-price auction. Let ef (v) be the expected expenditure

of a player with value v in the first-price auction.

(12) ef (v) =

(
v −

∫ v
v
Fm(t)dt

Fm(v)

)
F (v)

Let ea(v) be the expected expenditure of a player with value v in the all-pay auction. Since

the player always pays his bid, integration by parts implies

(13) ea(v) = β(v) = vFm(v)−
∫ v

v

Fm(t)dt.

Applying these formulas

(14) ef (v)− ea(v) = v (F (v)− Fm(v)) +

(
Fm(v)− F (v)

Fm(v)

)∫ v

v

Fm(t)dt

10All of the results presented in this section can be extended to the case of a seller with MEU. If ∆s is
the seller’s belief, it is sufficient that there is a distribution FM ∈ ∆s which is dominated in the sense of
FOSD by all other distributions in ∆s, and ∆s∩∆ 6= ∅. Since I focus on increasing strategies FM minimizes
the sellers revenue and the proofs go through substituting FM for F . See Lo[25] and Bose, Ozdenoren, and
Pape[7] for more discussion of ambiguity averse sellers.
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(15) = (F (v)− Fm(v))

(
v −

∫ v
v
Fm(t)dt

Fm(v)

)

(16) = (F (v)− Fm(v))B̂(v) ≥ 0.

The inequality follows from the fact that Fm FOSD F . �

The intuition for this result is the following. A player, with value v, in the all-pay auction,

makes a payment which is deterministic since the payment does not depend on the other

player’s bid. On the other hand, in a first-price auction the player’s payment is conditional

on having the highest bid. The revenue equivalence theorem[30][36] implies that if the seller’s

belief and the players’ minimizing distribution coincide (i.e. Fm = F ), the revenue is the

same for both games. If F (v) > Fm(v), the probability of the player paying the bid in the

first-price auction is higher for F . Thus, the expected payment is higher in the first-price

auction from the seller’s perspective.

Proposition 3.4. Given assumptions A.3 and A.4, the expected revenue is decreasing in p.

Proof: Let ep(v) be the expected expenditure of a player with value v in the game with

parameter p.

ep(v) = p

∫ v

v

β(t)f(t)dt+ (1− pF (v))β(v)

= β(v)− p
∫ v

v

β′(t)F (t)dt

=

∫ v

v

tfm(t)

1− pFm(t)
dt− p

∫ v

v

tfm(t)

1− pFm(t)
F (t)dt

=

∫ v

v

tfm(t)

1− pFm(t)
(1− pF (t))dt

This is nonincreasing in p since Fm FOSD F . The second line is by integration by parts and

the third is by applying the formula for the equilibrium.�

The intuition for this result is similar to the argument for Proposition 3.3. When F (v) =

Fm(v) the revenue equivalence theorem implies that the revenue is the same for all values of

p. However, when F (v) > Fm(v), a player with value v is more likely to have the highest

bid. When the player wins it is more likely to pay the highest bid if p is low. It follows that

the expected payment is decreasing in p.
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In summary the first-price auction produces more revenue than the all-pay auction, and

when A.3 is satisfied, the all-pay auction produces more revenue than the symmetric equi-

librium of the war of attrition. The format that is preferred will depend on whether the bid

is interpreted as a productive or wasteful use of resources. The payoff equivalence theorem

given in Bodoh-Creed[6] implies that players are indifferent between first-price and all-pay

auctions, and with assumption A.3, the players are indifferent between all of the games. Thus

in applications where the players’ expenditure is wasteful to society the war of attrition may

Pareto dominate the other forms of competition discussed.

4. Type Dependent Minimizing Distributions

In the previous section, the equilibrium characterization for games with p 6= 0 was fa-

cilitated by the assumption that there is a distribution in ∆ which first order stochastic

dominates the others. With this assumption the worst case distribution does not depend

on the player’s value. However, for some applications, A.3 may be too restrictive. If ∆ is

interpreted as a belief, there are many natural ways for the belief to be formed that would

not satisfy this assumption.

For instance, A.3 may not be appropriate when players are uncertain about the disper-

sion in the distribution of types.11 One application in which the level of variance may be

ambiguous is labor strikes. Kennan and Wilson[19] model labor strikes as war of attrition

in which each side is uncertain of the other side’s cost of conceding in a labor dispute. The

variance of the firms cost can be affected by market conditions or by decisions made by the

managers.12 If the union faces ambiguity about the variance of the firms costs the first order

stochastic dominance assumption may not adequately model the union’s information.

4.1. Characterization. I show that with a general form of ∆ the set of equilibria can be

analyzed in a way analogous to games with SEU. With SEU, an increasing equilibrium must

be a solution to a differential equation. This equation is defined by observing that the

derivative of the expected utility must be zero at the equilibrium bid. There are a couple of

difficulties to overcome to apply this method to MEU. The first is to show that the MEU is

sufficiently differentiable. This requires an envelope theorem which insures differentiability

and gives a formula for the derivative. I show that in equilibrium MEU is right-hand and left-

hand differentiable almost everywhere, and that in some sense, which will be made precise,

11Konrad and Kovenock[21] study the effects of variability in the distribution of types on behavior for
some contest environments.

12There is a growing literature that studies the strategic importance of risk taking. See Kräkel[22] and
Suzuki[41] and the references therein for recent references.
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the derivative can be set to zero at the equilibrium bid.13 Since the derivative of the utility

is not uniquely defined at some points, it is useful to think of an equilibrium strategy as a

solution to a differential inclusion.

For this section, assumption A.2 is used to insure that the set of minimizing distributions

has convenient properties. Since the expected utility is continuous in the distribution and ∆

is compact, the set of minimizers Gv,z,s ≡ {G ∈ ∆ : U(z; v, s,G) = V (z; v, s)} is nonempty.

The convexity of ∆ insures that Gv,z,s is convex valued. Additionally, it is convenient to note

that the compactness of ∆ implies that all of the densities of the distributions in ∆ have a

common upper bound g.

As a matter of notation, the subscript on the player’s value is often suppressed since I

will be focused on a symmetric environment. A selection of the correspondence Gv,z,s is a

function Gs : [v, v]× [v, v]→ ∆ such that Gv,z,s ∈ Gv,z,s for all v, z ∈ [v, v].

The first step to characterizing an equilibrium is to establish the differentiability of the

equilibrium utility. One can only hope to establish differentiability of the utility if players

are using sufficiently smooth strategies. The following lemma says that any increasing,

symmetric equilibrium strategy is a Lipschitz continuous function.

Lemma 4.1. If β is an increasing, symmetric equilibrium strategy, then β is Lipschitz

continuous with constant M = vg/(1− p)2.

In the proof, it is shown that if the strategy is not Lipschitz continuous, there is a profitable

deviation for a positive measure of values. Since the equilibrium strategies are Lipschitz

continuous, I restrict attention to such strategies without any loss of generality.

The following envelope condition establishes the differentiability of the minimum expected

utility, V , and provides a formula for the derivative.

Proposition 4.2. [Envelope Theorem] Let s(v) be a strictly increasing strategy which is

Lipschitz continuous with constant M = vg/(1− p)2.

(1) V (z; v, s)) is absolutely continuous in z.

(2) V is right-hand and left-hand differentiable in z at v for almost all v ∈ [v, v].

(3) Let Gv,z,s ∈ Gv,z,s be given. If z > v and V (.; v, s) is left-hand differentiable at z,

then V ′−(z; v, s) ≥ U ′(z; v, s,Gv,z,s). If z < v and V (.; v, s) is right-hand differentiable

at z, then V ′+(z; v, s) ≤ U ′(z; v, s,Gv,z,s). If z ∈ (v, v) and V (.; v, s) is differentiable

at z, then V ′(z; v, s) = U ′(z; v, s,Gv,z,s).

13All references to a measure refer to the Lebesgue measure.
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The proof applies the envelope theorems in Milgrom and Segal[27]. If V (.; v, s) is differ-

entiable at z, the derivative of the expected utility is given by

(17) V ′(z; v, s) = vgv,z,s(z)− (1− pGv,z,s(z))s′(z).

Setting this derivative to zero at the equilibrium bid motivates the expression in the state-

ment of Theorem 4.3. This is only a heuristic motivation because the envelope theorem does

not say that the MEU is differentiable at the equilibrium bid.

Theorem 4.3. If β is an increasing, symmetric equilibrium, then there exists a selection

Gz,v,β ∈ Gz,v,β for all z, v ∈ [v, v] such that

(18) β(v) =

∫ v

v

tgt,t,β(t)

1− pGt,t,β(t)
.

The main idea of the proof is that, for a strategy to be a symmetric equilibrium, the

equilibrium bid must be a local maximum. The envelope theorem implies that the left-hand

derivative of V is non negative and the right-hand derivative is non positive in equilibrium

for almost all values of v. The convexity of the set of minimizing distributions implies that,

at almost all equilibrium bids, there is a minimizing distribution, Ǧ, such that the derivative

of the expected utility, U ′(v; v, β, Ǧ), is zero. It is in this sense that, at the equilibrium bid,

the derivative is equal to zero almost everywhere.

The condition in the theorem is only a necessary condition. A priori, there seem to be two

possible ways for an efficient equilibrium to fail to exist. One is that all strategies satisfying

the necessary condition do not identify a global maximum. The other is that there may fail

to be a strategy that satisfies (18). Since the set of minimizing distributions depends on

the strategy played, and the strategy is defined using a selection from the set of minimizing

distributions it is not obvious that such a strategy exists.

The existence of a solution to the necessary condition can be understood as the existence

of a solution to the following differential inclusion.

(18′) β′(v) ∈
{
λ ∈ R : λ =

vgv,v,β(v)

1− pGv,v,β(v)
for Gv,v,β ∈ Gv,v,β

}
A restatement of Theorem 4.3 is that an equilibrium strategy must be a solution to this

differential inclusion.14 As stated in Proposition 4.4, there is always a solution to (18′).

That is, there is always a strategy which satisfies the necessary condition. Thus, if there is

14The usual form of a differential inclusion problem is to find an absolutely continuous function x : I → R
such that x′(t) ∈ F (x(t), t) for almost all t in an interval I where F : R× I → 2R is potentially multivalued.

In this case, I seek a solution to an inclusion of the form x′(t) ∈ F̂ (x(t), t, x(.)) where F̂ : R×I×C(I)→ 2R.
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no efficient equilibrium it is because every solution to the necessary condition fails to identify

a global maximum.

Proposition 4.4. There exists a strategy β and a selection Gz,v,β ∈ Gz,v,β for all z, v ∈ [v, v]

such that

β(v) =

∫ v

v

tgt,t,β(t)

1− pGt,t,β(t)
.

4.2. Existence. Existence of an equilibrium can be established by checking each strategy

in the set of strategies that satisfy the necessary condition. For each strategy that satisfies

the characterization in Theorem 4.3, the utility of submitting a bid can be rewritten under

the assumption that the other player uses the candidate strategy. Let β and Gv,z,β be as in

Theorem 4.3.

V (z; v, β) = vGv,z,β(z)− p
∫ z

v

β(t)gv,z,β(t)dt− (1− pGv,z,β(z))β(z)

= vGv,z,β(z) + p

∫ z

v

β′(t)Gv,z,β(t)dt− β(z)

(19) =

∫ z

v

{
vgv,z,β(t)

1− pGv,z,β(t)
− tgt,t,β(t)

1− pGt,t,β(t)

}
(1− pGv,z,β(t))dt

The second line follows from integration by parts and the third follows by applying (18).

This is similar to an expression that arises in Krishna and Morgan[23] with subjective

expected utility and affiliated distributions. By making assumptions about the unique prior

distribution of values they insure that (19) is increasing in z for z < v and decreasing for

z > v. Thus it seems natural to look for conditions under which the same is true with

MEU. However, is it is difficult to establish quasi-concavity of (19) because the minimizing

distribution may depend on v and this dependence is endogenous.

Proposition 4.5 below gives a condition under which, in equilibrium, the minimizing distri-

bution is independent of the player’s value. A.3 implies that the minimizing distribution is

independent of the player’s value regardless of the increasing strategy that the other player

uses. Proposition 4.5 gives a weaker condition than FOSD that insures that, in equilibrium,

the minimizing distribution is the same for any bid and value.

Proposition 4.5. If there is a G∗ ∈ ∆ such that for all G ∈ ∆ and z ∈ [v, v]

(20) v (G∗(z)−G(z)) ≤ p

∫ z

v

tg∗(t)

1− pG∗(t)
(G(t)−G∗(t))dt,
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then there is a symmetric equilibrium with the strategy given by

(21) β(v) =

∫ v

v

tg∗(t)

1− pG∗(t)
dt.

Condition (20) can be derived directly from (19) by starting with strategy (21) and im-

posing that, for any bid and value, G∗ is the minimizing distribution. The condition implies

a stochastic order which is weaker than FOSD when p > 0 and they are equivalent when

p = 0. This stochastic order allows distributions in ∆ to cross G∗. However, G∗ must be

sufficiently below the others on the lower segments of the support.

5. Example

In this section I provide an example where a symmetric, increasing equilibrium does not

exist. Using Theorem 4.3, I construct a strategy which is the unique strategy that satisfies the

necessary condition. For this strategy, the minimizing distribution for a given bid depends

on the value of the player. The dependence is such that although the bid prescribed by the

candidate strategy is a local maximum it is not a global maximum for some types.

Figure 1. ∆ = {H(v) = v,G(v) = .5 sin(π(v − .5)) + .5}

Let the values come from the interval [0, 1]. Let ∆ = {G,H} contain two distributions

G(v) = .5 sin(π(v − .5)) + .5 and H(v) = v.15 Furthermore, let p = .9.

15I could also let ∆ be the convex hull of these two distributions; by the linearity of the expectations
operator nothing would change.
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To construct the unique candidate equilibrium strategy, suppose that β satisfies the con-

ditions of Theorem 4.3. Define the strategy βF (v) ≡
∫ v

0
tl(t)

1−L(t)
dt for any distribution L ∈ ∆.

Since G is below H on the interval (0, .5), U(z; v, β,G) < U(z; v, β,H) for all z ∈ (0, .5).

This follows since the probability of winning is minimized and the expected payment is max-

imized by G when the player bids z ∈ [0, .5]. Since G minimizes the expected utility on

[0, .5], it follows from Theorem 4.3 that β(v) = βG(v) for all v ∈ [0, .5]. Define v∗ as the

lowest value such that U(v∗; v∗, βG, G) ≤ U(v∗; v∗, βG, H). This crossing is shown in Figure

2. Since G continues to minimize the expected utility on [0, v∗], it follows from Theorem

4.3 that β(v) = βG(v) for all v ∈ [0, v∗]. In the proof of Proposition 5.1, I show that if β

is an equilibrium, H is the minimizing distribution for a player with value above v∗. From

Theorem 4.3, this implies that the only candidate for an equilibrium is the strategy defined

in the following proposition.

Proposition 5.1. The unique strategy that satisfies the condition of Theorem 4.3 is given

by

(22) β(v) =

{
βG(v) for v ∈ [0, v∗]

βG(v∗)− βH(v∗) + βH(v) for v ∈ (v∗, 1].

Figure 2. Definition of v∗

To see that there is no equilibrium, by straightforward calculation one can show that a

player with value just above v∗ strictly prefers to bid lower than β(v∗), when the other player
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follows strategy β. The reason is that although a player with value v∗ gets the same expected

utility from and G and H at v∗, a player with a value just above v∗ gets a strictly lower

expected utility from H at v∗. This is the case because a player with a higher value cares

more about the probability of winning. This means that for a player with value above v∗

the MEU can be decreasing for transformed bids less than v∗. In this case, this provides

a profitable deviation for some values. This situation is depicted in Figure 3. The local

maximum of U(z; v∗ + .02, β,H) on the right is the MEU at the candidate equilibrium bid.

However, the point of intersection of the two curves provides a higher utility. The source of

the profitable deviation is that the minimizing distribution changes with the player’s value

such that the minimum expected utility is not quasi-concave.

Figure 3. The minimum expected utility, V (z; v∗ + .02, β), is the minimum
of the two curves depicted.

This example contrasts the results of a closely related paper by Bodoh-Creed[6]. He ana-

lyzes mechanism design problems with general ambiguous beliefs. If ∆ ⊂ ∆̃ the reserve price

for the revenue maximizing mechanism is lower for ∆̃. Also, if an ex ante balanced budget

bilateral trade mechanism maximizes the seller’s revenue, efficient trade increases the more

ambiguity the buyer and seller face. If a bilateral trade mechanism is efficient, increasing

ambiguity will decrease the ex ante budget deficit. The observation is that increasing am-

biguity improves efficiency in a mechanism design environment. In contrast, I show that
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a fixed mechanism may cease to have an efficient equilibrium if the players’ ambiguity is

increased.16

6. Extensions

6.1. Smooth Ambiguity Aversion. In the MEU model, I find that without making re-

strictive assumptions, there may not be an increasing, symmetric equilibrium. The reason

for this result is that the minimizing distribution can depend on the value of the player in an

endogenous way. This section argues that this result is robust to other specifications of am-

biguity aversion. I extend the analysis to the smooth ambiguity aversion model formalized

by Klibanoff, Marinacci, and Mukerji[20]. A comprehensive study of games with smooth

ambiguity aversion is beyond the scope of this paper; however, I will show how the intuition

gained from games with MEU applies to the smooth ambiguity aversion model.

To illustrate the potential issues involved, I describe the smooth ambiguity aversion model

as it applies to the class of games studied above. Let ∆ = {F (.; θ)}θ∈[0,1] be a parametrized

set of distributions on [v, v] where F is measurable in θ. Define the expected utility

(23) Uθ(z; v) ≡ vF (z; θ)− p
∫ z

v

β(t)f(t; θ)dt− (1− pF (z; θ))β(z)

for an increasing strategy β. The player’s interim utility from bidding like a player with

value z is

(24) W (z; v) =

∫ 1

0

ψ[Uθ(z; v)]dθ.

If ψ : R → R is concave, the player is said to be ambiguity averse. The concavity of ψ

means that the lower expected utilities are weighted more heavily in the utility function. It

is helpful to write the derivative of the utility function.

(25) W ′(z; v) =

∫ 1

0

ψ′[Uθ(z; v)]{vf(z; θ)− (1− pF (z; θ))β′(z)}dθ

ψ′[Uθ(z; v)] is a weighting function that weights distributions which yield low expected utility

more heavily. Let φ(z, v) ≡ ψ′[Uθ(z; v)] denote this weighting function and note that since the

expected utility depends on the other player’s strategy the weight depends on the strategy.

If a symmetric, increasing equilibrium, β, exists and solves the FOC,

(26) β′(v) =

∫ 1

0
φ(v; v)vf(v; θ)dθ∫ 1

0
φ(v; v)(1− pF (v; θ))dθ

.

16Also in the context of general equilibrium theory, ambiguity aversion tends to improve the efficiency of
outcomes as shown by Castro, Pesce, and Yannelis[10].
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Substituting (26) into (25) I get that

(27)

W ′(z; v) = (

∫ 1

0
φ(z; v)vf(z; θ)dθ∫ 1

0
φ(z; v)(1− pF (z; θ))dθ

−
∫ 1

0
φ(z; z)zf(z; θ)dθ∫ 1

0
φ(z; z)(1− pF (z; θ))dθ

)

∫ 1

0

φ(z; v)(1− pF (z; θ))dθ

To insure the quasi-concavity ofW , one must make some assumptions regarding the parametrized

family of distributions and ψ. In the special case that p = 0 and ψ(x) = 1− e−ax, (27) sim-

plifies to the following expression which does not depend on the bid strategy.

(28) W ′(z; v) =

(∫ 1

0
e−avF (z;θ)vf(z; θ)dθ∫ 1

0
e−avF (z;θ)dθ

−
∫ 1

0
e−azF (z;θ)zf(z; θ)dθ∫ 1

0
e−azF (z;θ)dθ

)∫ 1

0

ψ′[Uθ(z; v)]dθ.

This motivates the following proposition.

Proposition 6.1. In the all-pay auction with ψ(x) = 1− e−ax, if

(29) γ(v, z) =

∫ 1

0
e−avF (z;θ)vf(z; θ)dθ∫ 1

0
e−avF (z;θ)dθ

is increasing in v for all z, then

(30) β(v) =

∫ v

v

∫ 1

0
e−atF (t;θ)tf(t; θ)dθ∫ 1

0
e−atF (t;θ)dθ

dt

is an equilibrium strategy.

The condition is analogous to the condition developed in Krishna and Morgan[23] in the

context of affiliated values. The reason for assuming that γ(v, z) is increasing, is to establish

the quasi-concavity of equilibrium utility. Furthermore, in this particular case the sufficient

condition depends only on the parameters, which include a and the parametrized set of

distributions.

In general one might want

(31) γ̂(v, z) =

∫ 1

0
φ(z; v)vf(z; θ)dθ∫ 1

0
φ(z; v)(1− pF (z; θ))dθ

to be increasing in v for all z. However, it is not obvious what condition would insure

this since the function φ depends on the strategy being played and thus is determined in

equilibrium. Further work is needed to discover if there are more general conditions that

can establish existence of an increasing equilibrium with the smooth ambiguity model.
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The reasons for non existence of an increasing equilibrium in both the smooth ambiguity

aversion model and MEU are similar. With smooth ambiguity aversion the weighting func-

tion φ depends on the player’s value. MEU is simply the extreme case where weight is only

given to the distributions which minimize the expected utility. In either case, restrictions

on these weights are needed to insure the existence of an equilibrium. The main difficulty is

that the weighting function is usually endogenous.

6.2. Type Dependent Ambiguity. The analysis can be extended to allow for ambiguity

which depends on the value of the player. This can be used to model an environment where

a player may believe that if his own value is relatively high the other player’s value will tend

to be high as well. To be formal suppose that ∆(v) is not constant in v. The necessary

condition continues to hold as long as the following additional assumptions hold.

A. 5. ∆(v) is continuous in v.

A. 6. The conditions of A.2 hold for ∆(v) for all v ∈ [v, v].

For the purposes of Theorem 4.3 and Proposition 4.4 it is sufficient that the set of mini-

mizing distributions is upper semicontinuous and this additional assumption is sufficient for

that conclusion. However, to write sufficient conditions for the existence of an increasing

equilibrium one must take special care since the minimizing distribution will usually depend

on the player’s value.

To be more concrete, consider the following model of type dependent ambiguity aver-

sion. Let Π be a set of symmetric joint distributions over the values of the two play-

ers. Π can be thought of as a set of priors that players have ex ante. Assume that the

distributions in Π are twice differentiable in both arguments. For F ∈ Π, let f(.|v) be

the distribution of a player’s value conditional on the other player’s value being v. Let

∆(v) = {G ∈ C1([v, v])|g = f(.|v) for some F ∈ Π}. This means that ∆(v) arises from prior

by prior updating of the priors in Π.17 From the discussion in Section 4, it seems natural

to look for conditions under which there is a distribution GM ∈ Π such that GM(.|v) is the

minimizing distribution in ∆(v) for any bid. In addition, as in Krishna and Morgan[23] one

must be sure that GM(.|v) depends on v in such a way that an increasing equilibrium exists.

The following proposition provides such conditions.

Proposition 6.2. Suppose that there is a GM ∈ Π such that

17There are many other ways to model how beliefs depend on v. The appropriate choice of updating rules
is beyond the scope of this paper. For an axiomatization of the rule of updating each prior by Bayes rule
see Pires[33]
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(1) GM(.|v) FOSD G(.|v) for all G ∈ Π and for all v ∈ [v, v]

(2) and

vgM(z|v)

1− pGM(z|v)

is increasing in v for all z ∈ [v, v],

then there exists a symmetric, increasing equilibrium given by

(32) β(v) =

∫ v

v

tgM(t|t)
1− pGM(t|t)

I give a brief outline of the proof as the argument is similar to the discussion in Section 4.

Condition 1 of Proposition 6.2 guarantees that for any z or v, GM(.|v) will be an expected

utility minimizing distribution. Using a straightforward generalization of Theorem 4.3, the

only candidate equilibrium is given by (32). Condition 2 is sufficient to insure that the

equilibrium MEU, which has the same form as equation (19), is maximized by the candidate

equilibrium bid.

7. Conclusion

This paper discusses efficiency in a class of games with MEU. In sharp contrast to games

with SEU, games with MEU may not have an increasing, symmetric equilibrium. This is

because even though ∆, which is interpreted as the ambiguous belief, is independent of the

value, the minimizing distribution may depend on the value. This can be resolved if ∆

contains a worst distribution according to the relevant stochastic order. In that case there

is an equilibrium in which the worst case distribution is the same for all values.

Some may see non existence of efficient equilibrium as a deficiency of the MEU model

since increasing equilibria have many convenient properties: they are easy to understand for

players, they can be easily characterized, and they are efficient. However, the non existence of

an increasing equilibrium illustrates the complexity of games in which the expected utility of

a bid does not depend solely on the probability of having the highest bid. When players with

limited probabilistic knowledge need to weigh other aspects, such as the expected value of

the other player’s bid, it is not sufficient to only consider increasing strategies. The potential

complexity and the inefficiency which results may explain why, when the mechanism can be

chosen, mechanisms such as the first-price auction are prevalent.

It should be noted that this paper illustrates a method that can be used in other envi-

ronments. For instance, the ambiguity could be made type dependent so that ∆(v) depends

continuously on the type of the player. Here I study only monotone strategies. Thus, games
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with monotone equilibria in the SEU environment are candidates for this method. A straight-

forward generalization is the class of contests with spillovers described in Baye, Kovenock,

and de Vries[5]. Also, games with a common value component as in Milgrom and Weber[28]

can be studied in this way.

An interesting question for future research is the existence of an efficient equilibrium in

other models of ambiguity aversion. Using the model of smooth ambiguity aversion by

Klibanoff, Marinacci, and Mukerji[20], I provide an example in which assumptions based on

the parameters of the model can be used to establish existence. More investigation is needed

to see if the revenue rankings continue to apply. It would also be interesting, to study other

models such as the Choquet expected utility[39] model used by Salo and Weber[38] to study

the first-price auction.

Appendix A.

A.1. Proof of Lemma 4.1: Proceed by contradiction. Let β be an increasing equilibrium

strategy and suppose that there exist v, z ∈ [v, v] such that |β(v)− β(z)| > M |v − z| where

M = vg
(1−p)2 . WLOG let v > z. The strategy subscript on the minimizing distributions is

suppressed to avoid notational clutter.

V (v; v, β)− V (z; v, β) = U(v; v, β,Gv,v)− U(z; v, β,Gv,z) ≤ U(v; v, β,Gv,z)− U(z; v, β,Gv,z)

= v(Gv,z(v)−Gv,z(z))−p
∫ v

z

β(t)gv,z(t)dt−(1−pGv,z(v))β(v)+(1−p(Gv,z(v)+Gv,z(z)−Gv,z(v)))β(z)

= v(Gv,z(v)−Gv,z(z))−p
∫ v

z

β(t)gv,z(t)dt−(1−pGv,z(v))(β(v)−β(z))+p(Gv,z(v)−Gv,z(z))β(z)

≤ vg(v − z)− (1− p)(β(v)− β(z)) + pg(v − z)
v

1− p

=
vg

1− p
(v − z)− (1− p)(β(v)− β(z)) < 0

The first inequality follows from the definition of Gv,z. The weak inequality on the fourth

line follows because the densities are bounded by g, and β(v) ≤ v
1−p for all v. The bound on

β follows since with probability 1−p each player pays his bid so it is a dominated strategy to

bid above v
1−p . The strict inequality follows from the first supposition. Thus any equilibrium

is Lipschitz continuous with constant M = vg
(1−p)2 . Because the last inequality is strict there

is a positive measure of types that have a profitable deviation. This contradicts that β is an

equilibrium.

�
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Proof of Envelope Theorem: The proof uses the envelope theorems of Milgrom and

Segal[27] (hereafter MS).

Part 1: U(z; v, s,G) is absolutely continuous in z since each G ∈ ∆ is absolutely continuous

and s is absolutely continuous. By MS Theorem 2 to prove (1) it is sufficient to show that

there exists B > 0 such that |U ′(z; v, s,G)| ≤ B for almost all z ∈ [v, v] and for all G ∈ ∆.

Suppose s(.) is differentiable at z. For all G ∈ ∆,

(33) |U ′(z; v, s,G)| = |vg(z)− (1− pG(z))s′(z)| ≤ vg

(1− p)2
.

The inequality follows since s is Lipschitz continuous with constant M = vg
(1−p)2 and g is

bounded by g. Since s is differentiable almost everywhere the result is proved.

The following definition is used in proving Part 2.

Definition A.1. The collection of functions {l(.;G)}G∈∆ is equidifferentiable at z if

(34)
l(z′;G)− l(z;G)

z′ − z

converges uniformly as z′ → z.

This condition is satisfied for instance if {l′(.;G)}G∈∆ is an equicontinuous collection.

Suppose {l(.;G)}G∈∆ and {h(.;G)}G∈∆ are equidifferentiable at v and f(.) is differentiable

at v. Then {l(.;G) + h(.;G)}G∈∆ and {l(.;G)f(.)}G∈∆ are equidifferentiable at v.

Part 2: From MS Theorem 3, it is sufficient to show that {U(.; v, s,G) : G ∈ ∆} is equid-

ifferentiable at v wherever s is differentiable. Since ∆ is compact in the sense that the

densities form a compact set in C([v, v]), by the Arzelà-Ascoli theorem the densities of

the distributions in ∆ are an equicontinuous set. Thus, ∆ is equidifferentiable. Since s is

bounded and g is bounded above by g for all G ∈ ∆,
{∫ z

v
s(t)g(t)dt

}
G∈∆

is equidifferen-

tiable. {(1− pG(.))s(.)}G∈∆ is equidifferentiable at v whenever s is differentiable at v. Since

equidifferentiability respects sums {U(.; v, s,G)}G∈∆ is equidifferentiable at v whenever s is

differentiable at v. Since s is differentiable almost everywhere the result follows from MS.

Part 3: is a direct consequence of Theorem 1 in MS.

�

Lemma A.2. G : [v, v]× [v, v]×IBC([v, v])→ 2∆ is upper semicontinuous, compact valued,

and convex valued. Here IBC([v, v]) is the space of increasing, continuous functions on [v, v]

which are bounded by v
1−p and it is endowed with the uniform topology.
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Proof: First I show that

(35) U(z; v, β,G) = vG(z)−
∫ z

v

pβ(t)g(t)dt− (1− pG(z))β(z)

is continuous in all of its arguments. Focus on the middle summand as continuity of the rest

follows easily.

Let |z − ẑ| < ε1 and ‖g − ĝ‖∞ < ε2 and ‖β − β̂‖∞ < ε3. WLOG let z > ẑ∣∣∣∣∫ z

v

pβ(t)g(t)dt−
∫ ẑ

v

pβ̂(t)ĝ(t)dt

∣∣∣∣
≤
∣∣∣∣∫ ẑ

v

pβ(t)g(t)− pβ̂(t)ĝ(t)dt

∣∣∣∣+

∣∣∣∣∫ z

ẑ

pβ(t)g(t)dt

∣∣∣∣
=

∣∣∣∣∫ ẑ

v

pβ(t)g(t)− β̂(t)g(t) + β̂(t)g(t)− pβ̂(t)ĝ(t)dt

∣∣∣∣+

∣∣∣∣∫ z

ẑ

pβ(t)g(t)dt

∣∣∣∣
≤
∫ ẑ

v

pg(t)
∣∣∣β(t)− β̂(t)

∣∣∣ dt+

∫ ẑ

v

pβ̂(t) |g(t)− ĝ(t)| dt+

∣∣∣∣∫ z

ẑ

pβ(t)g(t)dt

∣∣∣∣
< pgε3(v − v) +

pv

(1− p)2
ε2(v − v) +

pvg

(1− p)2
ε1

By making ε1, ε2 and ε3 small enough the result is obtained. Berge’s maximum theorem

establishes that Gv,z;s ≡ arg minG∈∆ U(v; z, s,G) is u.s.c. and compact valued.

That Gv,b;s is convex valued follows from the convexity of ∆ and the linearity of U(v; z, s,G)

as a function of G.

�

Proof of Theorem 4.3: Let β, an increasing, symmetric equilibrium, be differentiable at v.

It follows from the proof of the envelope theorem that V ′+(.; v, β) and V ′−(.; v, β) both exist at

v. Since β(v) is an equilibrium V ′+(v; v, β) ≥ 0 ≥ V ′−(v; v, β). Furthermore, by MS Theorem

3

(36) V ′+(v; v, β) = lim
z→v+

vgv,z(v)− (1− pGv,z(v))β′(v)

and

(37) V ′−(v; v, β) = lim
z→v−

vgv,z(v)− (1− pGv,z(v))β′(v).

Since Gv,z;β is upper semicontinuous and since vg(v) − (1 − pG(v))β′(v) is a continuous

function of G, there is a Ĝ ∈ Gv,z;β such that V ′+(v; v, β) = vĝ(v)− (1− pĜ(v))β′(v). There

is also a G ∈ Gv,z;β such that V ′−(v; v, β) = vg(v) − (1 − pG(v))β′(v). Since Gv,z;β is convex

valued there exists a Ǧ ∈ Gv,z;β such that vǧ(v) − (1 − pǦ(v))β′(v) = 0. Thus there is a
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selection Gv,z,β of Gv,z,β such that β′(v) =
vgv,v;β(v)

1−pGv,v,β(v)
a.e. v ∈ [v, v]. By Lemma4.1, β is

absolutely continuous and can thus be written as in the theorem.

�

Background for proof of Proposition 4.4:

Definition A.3.

(38) λ(v, z; s) ≡
{
λ ∈ R : λ =

vg(z)

1− pG(z)
for some G ∈ Gv,z,s

}
Lemma A.4. λ(v, z; s) is upper semicontinuous and has compact, convex values.

Proof:

(39) λ̂(v,G) ≡ vg(v)

1− pG(v)

By the continuity of λ̂ and Lemma A.2, λ(v, b; s) is upper semicontinuous and compact

valued. The continuity of λ̂(v, .) implies that λ(v, b; s) is convex valued since Gv,z,s is convex

valued. �

The proof of Proposition 4.4 uses a convergence result which is useful in the study of

differential inclusions. For reference, I state a version of the theorem which is proved in

Aubin and Cellina[4].

Proposition A.5. [Convergence Theorem] Let F be a u.s.c. map from R2 to the closed,

convex subsets of R. Let I be an interval of R and xk(.) and yk(.) be measurable functions

from I to R2 and R, respectively, satisfying for almost all t ∈ I, for every ε-ball, Bε(0), in

R2 ×R there is a k0 ≡ k0(t, ε) such that for all k ≥ k0, (xk(t), yk(t)) ∈ graph(F ) +Bε(0).

If

• xk(.) converges almost everywhere to a function x(.) from I to R2,

• yk(.) belongs to L1(I,R) and converges weakly to y(.) in L1(I,R),

then for almost all t ∈ I, (x(t), y(t)) ∈ graph(F), i.e. y(t) ∈ F (x(t)).

Proof of Proposition 4.4:

The proof follows the technique in Aubin and Cellina (pages 128-129, [4]). For complete-

ness and since the differential inclusion here is slightly different from theirs, I include the

details. Let M = vg
(1−p)2 .

(40) K = {x ∈ C([v, v]) : x is Lipschitz with constant M and x(v) = 0}
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K is compact by the Arzelà-Ascoli Theorem.

(41) J (s) ≡ {z ∈ K : z′(v) ∈ λ(v, s(v); s)}

A fixed point of J satisfies the conditions for the type of strategy described in the statement

of the theorem.

I now show that the Kakutani-Glicksberg-Fan fixed point theorem applies to J (.). First I

argue that J (.) is non empty. For any continuous s(.), λ(v, s(v); s) is u.s.c. as a function of

v. Thus λ(v, s(v); s) has a measurable selection. If w(.) is such a selection, then
∫ v
v
w(t)dt is

in J (x). That J (.) is convex valued is straight forward since λ(v, s(v); s) is convex valued.

To establish upper semicontinuity, since K is compact it is sufficient to show that J has

a closed graph. This is done through the convergence theorem. Let xk ∈ K and zk ∈ J (xk)

be such that xk → x and zk → z. Let yk = z′k for all k. Since ||yk||∞ ≤ M for all k, by

the Banach-Alaoglu theorem there is a subsequence of {yk} and y such that ||y||∞ ≤M and∫ v
v
yk(t)φ(t)dt→

∫ v
v
y(t)φ(t)dt for all φ ∈ L1[v, v]. Since L∞[v, v] is a subset of L1[v, v], {yk}

converges to y weakly as a sequence in L1[v, v].

Since yk converges weakly it converges pointwise almost everywhere. yk(v) ∈ λ(v, xk(v);xk)

so by the u.s.c. of λ in all of its arguments there exists a k0(v, ε) s.t. for all k ≥ k0,

(xk(v), yk(v)) ∈ graph(λ(v, .;x)) + Bε(0) for almost all v ∈ [v, v]. By the convergence theo-

rem y(v) ∈ λ(v, x(v);x) for almost all v ∈ [v, v].

Since y = z′, J(.) is upper semicontinuous. By the Kakutani-Glicksberg-Fan fixed point

theorem, there exists a strategy β ∈ J(β). Such a strategy satisfies the conditions of the

proposition.

�

Proof of Proposition 4.5: I will first prove that if β is the strategy played by the other player,

then G∗ is the worst case distribution. To that end, suppose that for some v and z in [v, v]

there is another distribution which gives a strictly lower expected utility. Using a similar

expression to (19), the previous statement is equivalent to∫ z

v

{
vg∗(t)

1− pG∗(t)
− tg∗(t)

1− pG∗(t)

}
(1− pG∗(t))dt >

∫ z

v

{
vg(t)

1− pG(t)
− tg∗(t)

1− pG∗(t)

}
(1− pG(t))dt

For some G ∈ ∆.

By canceling and collecting terms this implies

(42) v(G∗(z)−G(z)) >

∫ z

v

tg∗(t)

(
1− 1− pG(t)

1− pG∗(t)

)
dt
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However this contradicts the hypothesis about G∗. Since z and v where arbitrary G∗ always

minimizes the expected utility. So, β satisfies the necessary condition. For β, (19) reduces

to

(43)

∫ z

v

(v − t)g∗(t)dt

which is clearly maximized at v. �

Proof of Proposition 5.1 I first show that, in a neighborhood above v∗, H is the minimizing

distribution for any equilibrium strategy. By calculation, it is can be shown that H continues

the be the minimizing distribution thereafter.

Observe that h(v∗) < g(v∗) and H(v∗) < G(v∗) together imply that β′H(v∗) < β′G(v∗). Let

β satisfy the conditions of Theorem 4.3 and let β̂ be as in Proposition 5.1. By Theorem 4.3,

βH(v) ≤ β(v) ≤ βG(v) for all v ∈ [v∗, v∗∗] where v∗∗ is such that h(v) < g(v) andH(v) < G(v)

both continue to hold on the interval. This implies that U(v; v, β,G) ≥ U(v; v, βG, G) and

U(v; v, β̂, H) ≥ U(v; v, β,H) for all v ∈ [v∗, v∗∗). Define Ũ(v; s, F ) ≡ U(v; v, s, F ) for all

F ∈ ∆.

(44) Ũ ′(v; βG, G) = G(v) ≥ H(v) = Ũ ′(v; β̂, H)

for all v ∈ (v∗, v∗∗]. Since U(v∗; v∗, βG, G) = U(v∗; v∗, β̂, H) and the expected utilities are

absolutely continuous on (v∗, v∗∗], U(v∗; v∗, βG, G) ≥ U(v∗; v∗, β̂, H) for all v ∈ (v∗, v∗∗].

Thus, H is the worst case distribution when both players follow β. By direct calculation v∗∗

can be taken to be v.
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